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We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids.
Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we
start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary
walls and the bulk viscosity. We introduce a coefficient Z��� characterizing reflection of sound with frequency
� at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-
dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are note-
worthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because
of the strong critical divergence of the thermal expansion.
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I. INTRODUCTION

In highly compressible fluids, significant adiabatic
changes can be achieved with propagation of sounds
throughout the container at fixed volume �1�. Such adiabatic
processes are ubiquitous, but are neglected in most hydrody-
namic theories of compressible fluids. Among them, a well-
known example is the piston effect near the gas-liquid criti-
cal point in a one-component fluid. It is caused by expansion
or shrinkage of a thermal diffusion layer created when a
boundary is heated or cooled. Sounds emitted from the layer
then induce adiabatic changes in the interior. The density
change in the layer is enhanced near the gas-liquid critical
point because of the strong critical growth of the isobaric
thermal expansion. As a result, macroscopic thermal equili-
bration times become much shorter at fixed volume �critical
speeding up�, despite the fact that the thermal diffusion con-
stant D tends to zero at the criticality �2–11�. That is, if the
boundary temperature is slightly changed, temperature ho-
mogenization occurs in the interior on a scale of the piston
time �3�

t1 = L2/4�� − 1�2D , �1.1�

where L is the cell length and �=Cp /CV is the specific-heat
ratio growing near the critical point. The time t1 is much
shorter than the isobaric equilibration time L2 /4D for ��1.
For example, t1=6.3�104�1.65 s for CO2 at the critical den-
sity with L=1 cm. Hereafter, �=T /Tc−1 is the reduced tem-
perature. The early experiments detected slow temperature
and density changes in the interior on time scales much
longer than the acoustic time L /c. The fast acoustic pro-
cesses were examined by numerical simulations of the hy-
drodynamic equations of compressible fluids �6,12,13�.

We may derive t1 in Eq. �1.1� using simple arguments. Let
us apply a small heat �Q per unit area to a fluid from the
boundary with area A. Then the volume of the thermal dif-
fusion layers changes by ��	−1 /�s�pA�Q�t� /T, where 	, s,
and p are the mass density, the entropy per unit mass, and the
pressure, respectively �see Eq. �2.48��. This leads to the den-
sity change in the interior

�	 =
	

T
� �T

�p
�

s

�Q

L
, �1.2�

where L=V /A is the cell length. The interior temperature
deviation is caused adiabatically as

�T = �� − 1��Q/CpL , �1.3�

where Cp=	T��s /�T�p is the specific heat at constant pres-
sure. In deriving these relations we have used the thermody-
namic relations ��	−1 /�s�p= ��T /�p�s and
	��T /�	�s��T /�p�s /T= ��−1� /Cp �see Eq. �2.9��. If the
boundary temperature is raised by T1 at t=0, we have �Q
�Cp��t�T1 in the early stage, where ��t�=�Dt is the thick-
ness of the thermal diffusion layer. The piston time �1.1�
follows if we set �T=T1 /2 at t= t1.

We mention subsequent notable contributions related to
the piston effect. Ferrell and Hao �14� found relevance of the
heat conduction in the boundary walls in transient heat trans-
port. That is, the thermal boundary condition of a cell con-
taining a near-critical fluid crosses over from the isothermal
to insulating one even for a metal boundary wall due to the
critical divergence of the effusivity of the fluid �15�. The
formula �1.1� should then be modified, because it is based on
the isothermal boundary condition. More recently, Carlès and
Dadzie �16,17� found that the bulk viscosity, which grows
strongly near the critical point, can affect the hydrodynamics
in the thermal diffusion layer. Gillis et al. �18� performed
experiments of acoustic resonance in xenon, where the fre-
quency and attenuation of the resonating modes were mea-
sured. For such long wavelength sounds, the heat conduction
at the boundary is the dominant damping mechanism rela-
tively far from the critical point, while the viscous effect in
the bulk becomes more important closer to the critical point.
They also presented thorough theoretical analysis of their
data. The critical growth of the effusivity and the bulk vis-
cosity of the fluid both serve to suppress the boundary damp-
ing, as confirmed experimentally and theoretically. Very re-
cently, Miura et al. �19,20� measured acoustic density
changes with precision of order 10−7 g /cm3 in near-critical
CO2 on the acoustic time scale using an ultrasensitive inter-
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ferometer. They detected emission and traversal of sound
pulses with width of order 5 
s, which were broadened as
they moved through the cell and interacted with the bound-
ary walls. Some of their data agreed with predictions, but
most data remain unexplained. Afterwords, Carlès repro-
duced part of the measured density evolution relatively far
from the critical point by analytically solving the linear hy-
drodynamic equations in the form of Laplace transforms and
numerically inverting them �21�.

In supercritical fluids, convection can easily be induced
even by small thermal disturbances owing to the enhanced
thermal expansion and a relatively small shear viscosity, as
revealed by experiments �22–24� and by simulations
�13,25–29�. As a unique aspect in Rayleigh-Bénard convec-
tion, overall temperature changes are induced by plume ar-
rivals at the boundary walls due to the piston effect, leading
to overshoot behavior observed in experiments of 3He near
its critical point �22,26,27�. In turbulent convective states,
significant noises of the adiabatic temperature changes were
predicted �26�, though not yet measured systematically. Re-
cently, three-dimensional simulations of convection were
performed in supercritical fluids �29�. Due to large thermal
expansion near the critical point, jetlike fluid flow has been
observed around a heated boundary �23,24�. In these pro-
cesses, the plume motions governed by the shear viscosity
are strongly influenced by large thermal expansion around a
heater and by rapid adiabatic density and temperature
changes achieved by sound propagation.

In this paper, we aim to present a general theory of ther-
moacoustic effects under realistic boundary conditions, in-
cluding acoustic resonance to periodic perturbations, me-
chanical and thermal piston effects, and sound emission and
reflection at a boundary. We experience these phenomena in
our everyday life, but their understanding is still fragmentary
even away from the critical point or even in the classical
regime �30�. We will start with the linear hydrodynamics of
supercritical fluids in a one-dimensional cell, neglecting side
wall effects and convection for simplicity. The scope of this
paper is hence limited. Particularly, we will clarify the influ-
ence of the decreasing effusivity ratio and the growing bulk
viscosity in the thermal diffusion layers near the critical
point, which was investigated by Gillis et al. in a compli-
cated geometry �18�.

The organization of this paper is as follows. In Sec. II, we
will decompose fluid motions into sound modes and thermal
diffusion modes with frequency �. These two modes are
mixed at the boundary under each boundary condition. In
Sec. III, we will study various thermoacoustic effects as ap-
plications. In the Appendix, the critical behavior of one-
component fluids used in the text will be summarized.

II. THEORETICAL BACKGROUND

Our linear theory can be used for one-component fluids in
one phase states. Near the critical point, the hydrodynamic
deviations are assumed to have spatial scales longer than the
thermal correlation length �, but their typical frequency �
can be higher than the relaxation rate of the critical fluctua-
tions t�

−1, where t���
−1.89 on the critical isochore �31�. For

such high frequencies �, the bulk viscosity  behaves
roughly as 1 /�, while ��−1.67 for �t��1 �see the Appen-
dix� �32–34�. The critical singularity of the shear viscosity �
is negligibly small, while the critical growth of the thermal
conductivity � arises from the convective motions of the
critical fluctuations taking place on a short time scale of or-
der 	�2 /� �	2.8�10−13�−1.25 s for CO2�. We assume �
�� /	�2, under which � is independent of �.

A. Linear hydrodynamics

The mass density, the temperature, the entropy �per unit
mass�, and the pressure are written as 	, T, s, and p, respec-
tively, with their small deviations being �	, �T, �s, and �p.
The velocity in the x direction is written as v. These devia-
tions depend on time t as exp�i�t� and vary in space along
the x axis. We may assume ��0 without loss of generality
�see Eq. �3.1��. These deviations may be regarded as the
Fourier transformations of the space-time-dependent devia-
tions with respect to time �=
dte−i�t�¯��. They obey the
linear equations �30�

i��	 = − 	v�, �2.1�

i�	v = − �p� + 	��v�, �2.2�

i�	T�s = ��T�. �2.3�

Here the prime denotes the differentiation with respect to x.
We have two dissipative coefficients; one is the thermal con-
ductivity � and the other is

�� = � + 4�/3�/	 , �2.4�

where  and � are the bulk and shear viscosities, respec-
tively. Using the thermodynamic derivatives we may express
�s and �p in terms of �	 and �T as

	T�s = CV��T − bs
−1�	� , �2.5�

�p = �−1c2�	 + �1 − �−1�as�T , �2.6�

where c2= ��p /�	�s is the square of the sound velocity,

� = Cp/CV �2.7�

is the specific-heat ratio with Cp=	T��s /�T�p and CV

=	T��s /�T�	 being the isobaric and constant-volume specific
heat �per unit volume�, respectively. To avoid cumbersome
notation, we write

as = � �p

�T
�

s
, bs = � �	

�T
�

s
= c−2as. �2.8�

For low-frequency sounds, the adiabatic relations �p	as�T
and �		bs�T should hold. We use the following thermody-
namic identities �1�:

� �p

�T
�
	

= �1 − �−1�as = 	c2CV/Tas. �2.9�

The coefficients as= ��p /�T�s and ��p /�T�	 both tend to the
derivative ��p /�T�cx along the coexistence curve near the
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critical point, where the corrections are of order �−1 on the
critical isochore �1�.

Next we consider small hydrodynamic deviations by as-
suming the space dependence in the sinusoidal form
exp�iqx�. From Eqs. �2.3� and �2.5� �	 and �T are related by

�T =
i�c2

�i� + �Dq2�as
�	 , �2.10�

where D=� /Cp is the thermal diffusion constant. Equations
�2.1�–�2.3� give the dispersion equation between q and �,

��2 − �i��� + �−1c2�q2��i� + �Dq2� = i�c2�1 − �−1�q2.

�2.11�

If we set q=� /c�X or X= �� /cq�2, the dimensionless quan-
tity X obeys the quadratic equation,

X2 − �1 + �v + ��T�X + �1 + ��v��T = 0, �2.12�

where we introduce two dimensionless coefficients repre-
senting the dissipation strength �18�,

�v = i���/c2, �2.13�

�T = i�D/c2. �2.14�

The ratio �v /�T=�� /D grow strongly near the critical point
�see the Appendix�.

For given �, Eq. �2.11� or Eq. �2.12� yields four solutions
q= ±q±= ±� /c�X±, where X+ and X− are the solutions of Eq.
�2.12� written as �18�

X± =
1

2
�1 + �v + ��T��� =

2�1 + ��v��T

1 + �v + ��T ±�
,

�2.15�

where we define

� = ��1 + �v − ��T�2 + 4�� − 1��T�1/2, �2.16�

with Re��0. The second line of Eq. �2.15� follows from
X+X−= �1+��v��T. The modes with q= ±q− represent the
sound, while those with q= ±q+ represent the thermal diffu-
sion. We may define q− and q+ such that Re�q− /���0 and
Im q+�0 hold. Hereafter Re�¯� and Im�¯� denote taking
the real and imaginary part, respectively. It is convenient to
introduce wave numbers k and � by

k = q− =
�

c�X−

, � = iq+ =
i�

c�X+

. �2.17�

The argument of X− is in the range �0,� /2� for ��0, lead-
ing to Im k�0, which implies that sound waves propagating
in the positive x direction ��e−ikx� are damped with increas-
ing x.

As �→0, we may treat �v and �T as small quantities. To
their first order we find X+	�T and X−	1+�v+ ��−1��T so
that �	�i� /D and k	� /c− i�s�

2 /2c3, where �30�

�s = � + 4�/3�/	 + �� − 1�D �2.18�

is the attenuation constant in the long wavelength limit. We
have ���� �k� at low frequencies. For example, ���

�105 cm−1 and �k��10−2 cm−1 for �=104 s−1, D
=10−6 cm2 s−1, and c=104 cm /s. In a cell with length L, the
strength of the bulk dissipation of sounds is represented by
the damping factor exp�−�BL� with

�B = − Im k 	 �s�
2/2	c3, �2.19�

where the second line is the low-frequency expression.
Mathematically, we may consider the high-frequency limit
��v��1 and ��T��1 neglecting the frequency dependence of
the transport coefficients to derive the limiting behavior k
→ �i� /���1/2 and �→ �i� /�D�1/2, though this limit is unreal-
istic. In this paper, we will assume ��T���−1 in Eq. �2.34�,
because it is satisfied in realistic experimental conditions, as
will be discussed.

B. Solutions in a rigid cell

We consider small hydrodynamic perturbations behaving
as ei�t in a fluid in a rigid cell with length L. The density
deviation can be expressed in the following linear combina-
tion:

�	 = ae−�x + be��x−L� + �eikx + �e−ikx. �2.20�

The coefficients a, b, �, and � depend on time as ei�t. The
first and second terms represent the deviations in the thermal
diffusion layers. The thickness of the layers is given by
1 / ���, which is assumed to be much shorter than the cell
length L, so

���� 1/L . �2.21�

In Eq. �2.20�, the second �first� term is virtually zero near
x=0 �x=L�. The third term represents a sound propagating in
the negative x direction, while the fourth term represents a
sound propagating in the positive x direction. From Eq. �2.1�
the velocity is expressed as

v =
i�

	�
�ae−�x − be��x−L�� −

�

	k
��eikx − �e−ikx� . �2.22�

If the boundary walls are rigid and fixed �35�, we require v
=0 at x=0 and L to obtain

a = ��/ik��� − �� , �2.23�

b = − ��/ik���eikL − �e−ikL� . �2.24�

Note that the mass change in the thermal diffusion layers
is �a+b� /� and that in the interior is ��eikL−1� / ik
+��1−e−ikL� / ik per unit area. From Eqs. �2.23� and �2.24�
these two changes cancel, ensuring the overall mass conser-
vation. Use of Eq. �2.10� gives the temperature deviation in
the following linear combination:

�T =
i�

bs
�ae−�x + be��x−L�

i� − �D�2 +
�eikx + �e−ikx

i� + �Dk2  . �2.25�

Let Q̇0 and Q̇L be the heat flux −��T� at x=0 and L, respec-
tively. Use of Eqs. �2.23�–�2.25� gives
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� − �

Q̇0

=
� − �e2ikL

eikLQ̇L

=
bs�� − 1�
��1 + ��v�

ik

k2 + �2 , �2.26�

where bs��−1� /�=	 /TasD with the aid of Eq. �2.9�. The
above quantities tend to the constant 	 /Tasc in the low-

frequency limit. We may use Eq. �2.26� when Q̇0 is a control

parameter or when Q̇L is measurable.
The coefficients a, b, �, and � can be determined if we

specify the boundary conditions at x=0 and L. Hereafter we
assume no temperature discontinuity at the boundaries. In
most theoretical calculations the boundary temperatures are
fixed, but in some papers the bottom heat flux Q0 is fixed
�26�. In this paper, we consider a more realistic boundary
condition of the temperature accounting for the thermal con-
duction in the boundary wall regions �14,18�. Here we as-
sume that �T tends to zero in the solid far from the bound-
aries without heat input. In the solid region �x�0�, the
temperature deviation then decays as �T�0�e�wx with

�w = �i�Cw/�w�1/2, �2.27�

where �w and Cw are the thermal conductivity and the heat
capacity �per unit volume� of the solid, respectively. The
1 / ��w� is the thickness of the thermal diffusion layer in the
solid and is assumed to be shorter than the thickness of the
wall. Without temperature discontinuity at the boundary, the
energy balance at x=0 yields

�T� = �w�w�T/� = aw�i�/D�1/2�T , �2.28�

where �T and �T� are the values at x=0. In the second line,
the coefficient aw is the effusivity ratio �15,18�,

aw = �Cw�w/Cp��1/2. �2.29�

For CO2 in a Cu cell �20� we have aw=3�103�0.92. The
boundary temperature at x=0 is fixed or �T�0�=0 for aw

→�, while the boundary is thermally insulating or
�d�T /dx�x=0=0 as aw→0. On the other hand, if the other
boundary wall in the region x�L is made of the same ma-
terial, the boundary condition at x=L reads

�T� = − aw�i�/D�1/2�T , �2.30�

with the same aw as in Eq. �2.28�, where �T and �T� are the
values at x=L.

The boundary conditions at x=0 give Eqs. �2.23� and
�2.28�, from which we may readily calculate the reflection
factor Z�� /� between the outgoing and incoming sound
waves. It is convenient to introduce the combination,

W =
� − �

� + �
=

1 − Z

1 + Z
, �2.31�

because W is a small quantity in our system. Some calcula-
tions yield a general expression,

W =
− ik�i� − �D�2�/�

i� + �Dk2 + �i�D��2 + k2�/aw�
, �2.32�

in terms of k and �. In the case of a thermally insulating
boundary, we have W=0 and Z=1 by setting aw→0 in Eq.
�2.32�. The interaction of sounds and the boundary wall is

characterized by Z or W, where the wall properties appear
only through the effusivity ratio aw and the system length L
does not appear.

C. Adiabatic condition in the interior

We will clarify an upper bound of the frequency, below
which the sound motions in the interior are adiabatic or
without entropy deviations. Under this adiabatic condition,
the results from the linear hydrodynamic equations can be
much simplified, so it is crucial in the following calculations.

Far from the boundary walls or outside the thermal diffu-
sion layers, we may neglect the localized modes to obtain the
interior hydrodynamic deviations. From Eqs. �2.5�, �2.6�, and
�2.25�, those of the density, temperature, and pressure are
related by

�	 = �1 + �Dk2/i��bs�T ,

�p = �1 + Dk2/i��as�T . �2.33�

Here x and L−x are much longer than 1 / ���. The second
terms in the brackets arise from a small entropy deviation in
the interior. Since ��1, the usual adiabatic relations hold in
the interior under the condition

��Dk2/i�� � ���T�� 1 or �� c2/�D , �2.34�

where �T is defined by Eq. �2.14�. This condition is well
satisfied in the usual hydrodynamic processes. Even near the
critical point, the time tad��D /c2 remains very short. For
example, tad=7.6�10−14�−0.62 s for CO2.

Under Eq. �2.34� we have �	1+�v so that X+ and X− in
Eq. �2.15� are approximated as

X+ =
1 + ��v

1 + �v
�T, X− = 1 + �v. �2.35�

The wave numbers k and � are expressed as

� = � i�

D
�1/2� 1 + �v

1 + ��v
�1/2

, k =
�/c

�1 + �v

. �2.36�

We retain �v, since it becomes appreciable near the critical
point because of the strong critical divergence of . As will
be discussed in the Appendix, 		c2RBt� for �t��1, where
RB	0.03 is a universal number and t�=�

2 /D is the charac-
teristic time of the critical fluctuations with � being the cor-
relation length. Carlès found the dependence of � on the
singular combination � as in Eq. �2.36� �16,17�. By setting
��v= i�tB, we introduce a new characteristic time tB as

tB = �/	c2 = RB�t�. �2.37�

Then tB� t� once RB��1. For CO2, tB=1.9�10−15�−3.0 s.
See Table I and Fig. 1 for the characteristic times with L
=1 cm, where tB exceeds the acoustic time L /c for ��3
�10−4 and the modified piston time t1� �to be introduced in
Eq. �3.16�� for ��3�10−5. There can be a sizable frequency
range with tB

−1��� t�
−1 at small �, where � becomes inde-

pendent of � as
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�	 �	c2/�D�1/2 	 �RB��−1/2�−1. �2.38�

The thickness of the thermal diffusion layer 1 / ��� remains
longer than � by �RB��1/2. Also from the expression of k in
Eq. �2.36� we write the sound dispersion relation as k
=� /c*���, where we define the complex sound velocity �1�,

c*��� = c�1 + �v, �2.39�

whose critical behavior will be discussed in the Appendix.
As � is decreased, we first encounter the regime where W

grows but aw�1 and �tB�1 still hold. However, the critical
growth of W is eventually suppressed by the growing aw

−1 and
. If we use Eqs. �2.35� and �2.36� under Eq. �2.34�, we
approximate W in Eq. �2.32� as

W =
�� − 1���T

�1 + �v�Xv
, �2.40�

where we define

Xv = �1 + ��v + aw
−1�1 + �v. �2.41�

Here Xv	1+aw
−1 for �tB�1 and Xv	�i�tB�1/2+aw

−1 for
�tB�1. Thus Xv	�i�tB�1/2 holds for �tB��1, where it is
convenient to define

tB� = tB�1 + aw
−1�−2, �2.42�

since tB� 	 tB for aw�1 and tB� 	 tBaw
2 for aw�1.

For �� tB
−1, the viscous effect is negligible, leading to the

classical expression,

W = �� − 1���T/�1 + aw
−1� = �it2� , �2.43�

which is valid not very close to the critical point. We may
introduce a characteristic time t2 defined by

t2 = �1 + aw
−1�−2�� − 1�2D/c2, �2.44�

which includes the effect of the heat conduction in the wall.
The time t2 will appear in the formulas for reflection in Sec.
III E. As shown in Table I and Fig. 1, t2 is very short even
compared with t�. In the literature �see Sec. 77 of Ref. �30��,
it is argued that the amplitude of a plane wave sound is
decreased by the factor ��−1��2D� /c upon reflection at an
isothermal boundary wall. This factor is obviously equal to
1− �Z�	2 Re W from Eq. �2.43�.

In Fig. 2, Re W and Im W are displayed as functions of �
at �=10−3 and 10−4. While �tB�1, they increase with in-
creasing � obeying Eq. �2.43�. After � exceeds tB

−1, �1+��v
becomes ���v in Eq. �2.41�; then, Re W tends to saturate
and Im W decreases. In fact, for �tB��1, we have Xv
	���v and

W 	 ��D/���1/2 	 W0�
0.64, �2.45�

where W0	2.1 for CO2. Also as a function of �, Re W ex-
hibits a maximum around the reduced temperature at which
tB��−1, as will be shown in Fig. 3. Growing aw

−1���−1.14�
further serves to decrease W. Thus, even close to the critical
point, we find �W��1 and

Z = 1 − 2W + ¯ . �2.46�

TABLE I. Parameters of CO2 in a Cu cell with L=1 cm for �=10−3 �first line�, 10−4 �second line�, and
10−5 �third line�. Times are in seconds.

� aw t��106 tB�106 L /c�104 t1� t2�108

260 5.0 0.24 1.9 0.71 1.0 0.12

3600 0.63 18 1900 0.83 0.1 1.7

5�104 0.075 1300 1.7�106 0.98 0.08 3.0
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FIG. 1. Characteristic times t� in Eq. �A4�, tB in Eq. �2.37�, t2 in
Eq. �2.43�, t1� in Eq. �3.16�, and L /c vs �=T /Tc−1 for CO2 in a Cu
cell with L=1 cm.
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FIG. 2. Re W, Im W, and ��v � =� /	c2 vs �L /�c at �=10−3

�left� and 10−4 �right� for CO2 in a Cu cell with L=1 cm. As �
exceeds tB

−1, Re W tends to saturate and Im W decreases, due to the
growing bulk viscosity and the decreasing effusivity ratio.
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D. Hydrodynamic variables in the adiabatic condition

Under Eq. �2.34� we obtain simple expressions for the
deviations of the temperature, the pressure, and the entropy
including �v. From Eqs. �2.5�, �2.6�, �2.9�, and �2.20� we find

�T = � �T

�	
�

p
�1 + ��v���	�b + bs

−1��	�in, �2.47�

�s = � �s

�	
�

p
�1 + �v���	�b, �2.48�

�p = − c2�v��	�b + c2��	�in, �2.49�

where ��	�b=ae−�x+be��x−L� is the density deviation local-
ized near the boundaries and ��	�in=�eikx+�e−ikx is the inte-
rior density deviation. In deriving Eq. �2.47� use has been
made of the thermodynamic relation �1−��bs= ��	 /�T�p. Un-
der Eq. �2.34�, the entropy deviation �s is localized near the
boundaries, while the localized part of the pressure deviation
�p is nonvanishing to satisfy i�	v=−�p�+	��v�=−�p�
− i����	�→0 as x→0 and L in Eq. �2.2�. Note that the xx
component of the stress tensor is given by �xx= p−	��v� and
its deviation contains no localized part and behaves as

��xx = c*���2��	�in, �2.50�

where c*��� is defined by Eq. �2.39�. Equations �2.48� and
�2.50� are natural consequences in the adiabatic condition,
readily yielding nontrivial Eqs. �2.47� and �2.49� from Eqs.
�2.5� and �2.6�.

We examine the temperature and pressure deviations close
to the boundary at x=0 by assuming Eqs. �2.23� and �2.28�
and setting �=Z� as an example. In this case the density
ratio ��	�b / ��	�in tends to ��−1� /Xv

�1+��v as x→0, so
that

bs�T = �� + ���1 −
1

Xv

�1 + ��ve−�x , �2.51�

�p

c2 = �� + ���1 −
�� − 1��v

Xv
�1 + ��v

e−�x , �2.52�

where 0�x�1 / �k�. The velocity behaves as v= �� /	k���
−���1−e−�x� from Eq. �2.23�. From Eqs. �2.51� and �2.52�
we draw the following. �i� For the insulating case aw→0, the
coefficients of e−�x in the brackets in Eqs. �2.51� and �2.52�
vanish. �ii� For the isothermal case aw→�, that in Eq. �2.51�
tends to unity, leading to �T→0 at x=0, and that in Eq.
�2.52� tends to ��−1��v / �1+��v�. �iii� Generally, for �tB�
�1, they both tend to unity and the hydrodynamic variations
in the thermal diffusion layer are diminished, where tB� is
defined by Eq. �2.42�. �iv� In the original work �3�, the pres-
sure homogeneity throughout the interior and the thermal
diffusion layers was assumed, while the density deviations in
the two regions are very different. We recognize that the
pressure homogeneity holds only in the low-frequency limit
�tB��1.

III. APPLICATIONS

A. Acoustic modes in a cell

Gillis et al. �18� calculated the acoustic eigenmodes for
their experimental geometry, taking into account the growing
aw

−1 and . In the following, we will present a simpler version
in the one-dimensional cell, 0�x�L, taking into account
these two ingredients. In this case � is treated as one of the
eigenvalues and is complex, while we have assumed ��0 in
the previous section. Then � should have a positive imagi-
nary part for the stability of the system. Here �i�
= �1+ i��� /2 for ��0, while �i�= �1− i���� � /2 for ��0.
The latter follows from the requirement that the real part of �
in Eq. �2.17� should be positive. For general complex �, all
the quantities introduced so far should be functions of �
analytic for Re�i���0 or for Im ��0. Therefore, X±�−��
=X±��*�* and

Z�− �*� = Z���*, W�− �*� = W���*, �3.1�

where �* is the complex conjugate of �.
Under the boundary conditions �2.28� and �2.30�, the in-

terior density deviation is expressed as

�	 = ��eikx + Ze−ikx� = ���eik�L−x� + Ze−ik�L−x�� , �3.2�

in terms of Z=� /�. The first and second lines follow from
Eqs. �2.28� and �2.30�, respectively, and should coincide so
that ��eikL=� and ��Ze−ikL=�, leading to Ze−ikL=Z−1eikL.
We now find the condition of the eigenmodes,

Z = ± eikL, �3.3�

where � corresponds to even modes and � to odd modes.
Namely, the density and temperature deviations are even
�odd� functions of x−L /2 for the even �odd� modes. For W
= �1−Z� / �1+Z� calculated in Eq. �2.32� or Eq. �2.40�, we
obtain

W = − i tan�kL/2� �even modes�

= i cot�kL/2� �odd modes� . �3.4�

Since W is small as in Fig. 2, the eigenfrequencies �n�n
=1,2 ,3 . . . � are nearly equal to n�c* /L, where c* is defined
by Eq. �2.39�. The leading correction from W can be written
as

�n = �n� + 2iW + ¯ �c*/L

= �1 + i�� + i� + ¯ �Re �n, �3.5�

where n=2,4 , . . . for the even modes and n=1,3 , . . . for the
odd modes. We assume small bulk damping ��v��1 and de-
fine

�� =
2

n�
Re W, � =

n�

L

Im c*

Re �n
, �3.6�

where �� represents the boundary damping and � the bulk
damping. For �t��1 we may set �=n� /2	cL. The reso-
nance quality factor Q−1 �18� is equal to 2���+�� in our
notation. The resonance frequency including the shift is
given by the real part,
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Re �n = �n� − 2 Im W + ¯ �Re c*/L . �3.7�

The frequency � in c* and W may be equated with Re �n.
In Fig. 3, we show ��, ��=n� /2	cL�, and the sum ��

+� as functions of � in the regime �t��1 for the odd mode
of n=1 and the even mode of n=4 for CO2 in a Cu cell with
L=1 cm. We notice the following. �i� For such long wave-
length sounds, the boundary damping is relevant far from the
critical point, but the bulk damping eventually dominates
close to the critical point. �ii� In accord with the discussion
around Eq. �2.45�, �� decreases on approaching the critical-
ity in the region of tB��

−1�L /n�c, with a maximum at
�tB�1. As a result, the curve of the sum ��+� is flattened
considerably around tB��−1.

These theoretical results are consistent with the experi-
mental data by Gillis et al. �18�. They performed the reso-
nance experiment over a wide range of �t� �up to about 200�
to measure the frequency-dependent bulk viscosity. In agree-
ment with the theory �1,3�, � or � /	c2 became indepen-
dent of � in the high-frequency regime �t��1 �see Eq. �A6�
in the Appendix�.

B. Periodic perturbations

Periodic perturbations may be applied to a fluid in a cell
in various manners. Resonance can occur when the fre-
quency � is close to Re �n. It is sharp for small Im �n. We
will give three boundary conditions at x=0 leading to reso-
nance. We assume the boundary condition Eq. �2.30� at x
=L. Then use of Eq. �3.2� yields �=�Ze−2ikL. The interior
density deviation is of the form

�	 = �e−ikx + �Zeikx−2ikL, �3.8�

where the second term arises from the reflection at x=L.
The bulk damping of the reflected waves is represented by

�e−ikL�=e−�BL. From Eq. �2.19� �B is expressed as

�B 	 AB��/�c�2, �3.9�

in the low-frequency regime �t��1. We find AB=0.5
�10−3 cm and 0.03 cm at �=10−3 and 10−4, respectively, for

CO2. In the relatively high-frequency range �
� �2AB�−1/2�c /L, the factor e−2ikL��e−2�BL� becomes negligi-
bly small. Then, near the boundary, �	 consists of the outgo-
ing wave only, resulting in no resonance. On the other hand,
in the high-frequency regime �t��1, Eq. �A7� gives

�B 	 � Im c*/�Re c*�2 	 0.13�/� Re c*. �3.10�

This means that a sound emitted at x=0 reaches the other end
with the damping factor e−0.13 for the first resonance fre-
quency �	� Re c* /L.

1. Temperature oscillation

Zhong et al. �11� measured a density change induced by
boundary temperature oscillation in near-critical 3He, where
the frequency was very low �� /2��2 Hz� and the bulk vis-
cosity was not important. However, they could measure in-
phase and out-of-phase response in agreement with the origi-
nal theory �3�. Here we consider temperature oscillation at
higher frequencies.

In the first example, the temperature in the wall region
x�0 is oscillated, while the boundary walls are mechani-
cally fixed. More precisely, we require �T→Tw�ei�t as x
→−�; then, �T�x�=e�wx��T�0�−Tw�+Tw in the region x�0.
Here Tw is an externally applied parameter. The thermal
boundary condition at x=0 is then given by

�T� = aw�i�/D�1/2��T − Tw� , �3.11�

as a generalization of Eq. �2.28�. Some calculations using
Eqs. �2.23� and �2.25� give the response function defined by
RT�� /bsTw in the form

RT =
1

2
�1 + �Dk2/i��

1 − Z

1 − Z2e−2ikL . �3.12�

Notice that RT diverges as RT	cW /2iL��−�n� for �	�n

�n=1,2 , . . . � in the complex � plane from Eq. �3.3�. Under
the adiabatic condition �2.34�, the interior temperature devia-
tion is expressed as

�T = bs
−1�	 = �e−ikx + Zeikx−2ikL�RTTw. �3.13�

Furthermore, neglecting �Dk2 / i� in Eq. �3.12� and using
�W��1 �see Fig. 2�, we obtain

RT 	 W/�1 − �1 − 4W�e−2ikL� . �3.14�

In Fig. 4, we plot the absolute value �RT� calculated from
Eq. �3.12� vs the normalized frequency �L /�c at �=10−3

and 10−4, using the data for CO2 in a Cu cell with L=1 cm
�20�. It exhibits peaks at �	n�c /L as expected, but its peak
heights do not exceed 1 /2 due to the small factor 1−Z
	2W in the numerator in Eq. �3.12�. As discussed below Eq.
�3.9�, the resonant peaks should disappear for �L /�c
� �2AB�−1/2, where we may neglect e−2ikL in RT to obtain
RT	W. These results are in accord with Fig. 4, since
�2AB�−1/2	30 and 4 for �=10−3 and 10−4, respectively.

In the low-frequency case ��c /L, the interior deviations
become nearly homogeneous. Figure 1 indicates that tB can
much exceed L /c very close to the critical point, while
��v��1 holds. Thus, retaining ��v, we set eikL	1+ ikL and

αα ζ λ+
αα ζ λ+

αλ αλ

α ζ α ζ

10 -310 -4 10 -2

T/T - 1cε =
10 -310 -4 10 -2

T/T - 1cε =

ω t B= 1 ω t B= 1

10 -2

10 -3

10 -1

10 -2

10 -3

10 -1n = 1 n = 4

FIG. 3. Normalized damping constants ��, �, and ��+� de-
fined by Eqs. �3.5� and �3.6� vs �=T /Tc−1 for n=1 �left� and n
=4 �right�. The resonant frequencies are close to �=n�c /L�n
�4�104 s−1, which are exceeded by tB

−1 close to the critical point
as marked by the arrows.
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1+�v	1 and use Eqs. �2.40� and �3.12� to find

RT 	
1

4
��i�t1Xv + 1�−1, �3.15�

where t1 is defined by Eq. �1.1� and Xv by Eq. �2.41�. If �
� tB

−1, we further have RT	��i�t1�+1�−1 /4 with

t1� = �1 + aw
−1�2t1 = �1 + aw

−1�2L2/4�� − 1�2D , �3.16�

which is related to t2 in Eq. �2.44� by t1�t2=L2 /4c2. The t1�
first decreases as t1��2.26 for aw�1 but finally weakly in-
creases as t1aw

2 	�−0.22 for aw�1. See Fig. 1 for the curve of
t1�. As will be discussed in Sec. III C, t1� is the piston time
including the effect of the wall heat conduction �14�.

We need to know when ��i�t1Xv��1 is realized. For aw

�1 it holds for ��1 / t1. For aw�1 we have ��t1Xv
	aw

�1+ itB / t1�+1 at �=1 / t1�. Thus, for any aw, the condition
of ��i�t1Xv��1 is simply given by �t1��1 under the condi-
tion

tB�/t1� = �1 + aw
−1�−4tB/t1� 1, �3.17�

where tB� is defined by Eq. �2.42�. For aw�1, the above
condition becomes aw

4 tB / t1=Av�
−0.97 /L2�1. For CO2 in a Cu

cell, we find Av=2�10−6 with L in cm, so this condition is
well satisfied for ��2�10−6 with L=1 cm. This crossover
reduced temperature depends on L roughly as L−2. On the
other hand, if �t1��1 under Eq. �3.17�, we find

�T 	 Tw/2, �3.18�

in the interior. Note that the reverse condition of Eq. �3.17�,
aw

4 tB / t1�1, holds extremely close to the critical point, where
��i�t1Xv��1 and RT	1 /4i��t1tB are obtained for �
� �t1tB�−1/2. See the discussion below Eq. �3.32� for the re-
laxation behavior in this ultimate regime.

2. Mechanical oscillation

In the second example, the boundary wall at x=0 is me-
chanically oscillated without heat input from outside. This is
the case in the usual acoustic experiments using a piezoelec-
tric transducer �18�. Carlès and Zappoli found a unique re-
sponse at low frequencies �t1�1 for isothermal boundary
walls �36� �see text following Eq. �3.22��.

Let uw��ei�t� be a small applied displacement amplitude;
then, to linear order in the deviations we set

v = i�uw �3.19�

at x=0 in Eq. �2.12�. Assuming Eq. �2.30� and using Eq.
�3.8� we obtain

� = − �1 +
�

aw

�D

i�
 �RT

1 − �D�2/i�
	uw

= �� − 1�−1�i�/DXvRT	uw, �3.20�

where the first line is general and the second line is the
approximation under the adiabatic condition, Eq. �2.34�.
Since the response is proportional to RT, resonance occurs as
in the previous case of temperature oscillation.

In the low-frequency case ��c /L, the interior density
change is nearly homogeneous and

�		 2�	 �1 −
1

�i�t1Xv + 1
	uw

L
, �3.21�

which is the counterpart of Eq. �3.14�. As discussed below
Eq. �3.16�, �i�t1Xv is large in the relatively high-frequency
range ��1 / t1� under Eq. �3.17�. Thus the interior density
deviation behaves as

�		 	uw/L �1/t1���� c/L�

	 �i�t1Xv	uw/L ��� 1/t1�� , �3.22�

below Eq. �3.17�. The volume change mostly occurs in the
bulk region for 1 / t1����c /L and in the thermal diffusion
layers for �t1��1. The latter low-frequency regime is wid-
ened in near-critical fluids where t1� becomes short �36�.

3. Heat flux oscillation

In the third example, we supply a heat flux Q̇0
=−��dT /dx�x=0�ei�t at x=0 assuming the boundary condi-
tion �2.30�. It is convenient to introduce a dimensionless re-
sponse function RQ by

� =
	

cT
� �T

�p
�

s
RQQ̇0. �3.23�

Then Eqs. �2.26� and �3.8� give
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FIG. 4. Absolute value of the response function RT��� in Eq.
�3.12� vs �L /�c on a semilogarithmic scale for �=10−3 �upper
panel� and 10−4 �lower panel� applicable for CO2 in a Cu cell with
L=1 cm.
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RQ =
ick/D

�1 + ��v��k2 + �2��1 − Ze−2ikL�

=
1

�1 + �v�3/2�1 − Ze−2ikL�
, �3.24�

where the first line is general and the second line holds under
the adiabatic condition �2.34�. In the complex � plane, RQ
has poles �n�, which are equal to �2n in Eq. �3.5� with system
length changed to 2L. Thus RQ grows for �	n�c /L for �
� �2AB�−1/2�c /L. In Fig. 5, we plot the absolute value �RQ�
as a function of �L /�c for �=10−3 and 10−4. We can see that
�RQ� is larger than �RT� in Fig. 4 roughly by two orders of
magnitude except at very low frequencies.

The behavior of RQ in the low-frequency range ��c /L is
very different from that of RT, however. From the second line
of Eq. �3.24� we have RQ	1 / �2ikL+2W� to obtain the coun-
terpart of Eq. �3.15�,

RQ 	
Xv

2�i�t2

�1 + 2�i�t1Xv�−1. �3.25�

Under Eq. �3.17� we find that RQ	�1+aw
−1� /2�i�t2 for �

�1 / t1� and RQ	1 /4i��t1t2 for 1 / t1����c /L.

In this situation we may calculate the heat flux Q̇L at x
=L. From Eq. �2.26� it is written as

Q̇L =
�1 − Z�e−ikL

1 − Ze−2ikL Q̇0, �3.26�

which vanishes for Z=1 �or for aw=0� and becomes small
with increasing �BL. Near the resonance frequency n�c /L,

the ratio Q̇L / Q̇0 behaves as �−1�nW / �i��L /c−n��

+n� /2	c2+W�. The low-frequency behavior for ��c /L is
given by

Q̇L = �1 + 2�i�t1Xv�−1Q̇0. �3.27�

From the discussion below Eq. �3.16�, we find Q̇L	 Q̇0 for
�t1��1 under Eq. �3.17�. That is, an applied heat flux passes
through a near-critical fluid on the time scale of t1� under Eq.
�3.17�, due to the piston effect.

C. Thermal and mechanical piston effects

1. Boundary temperature change

In the original papers of the piston effect �3�, the bound-
ary temperatures at x=0 and L were both raised by a com-
mon small amount T1 at t=0. Subsequently, the boundary
temperatures were held fixed for t�0. In this paper, we ex-
amine the effects of finite aw

−1 �14,18� and large  �16,17�. We
suppose that the system was in equilibrium for t�0 and the
temperature in the wall region x�0 was instantaneously
raised by T1 at t=0 without external heat input in the other
wall region x�L. The boundary conditions are then given by
�T�x , t�→T1 as x→−� and �T�x , t�→0 as x−L→� for t
�0. All the deviations vanish for t�0.

The Fourier transformation of the interior temperature de-
viation �T�x , t� with respect to t is given by Eq. �3.13� with
Tw=T1ei�t / i� �since 
0

�dte−i�t=1 / i��. The inverse Fourier
transformation gives

�T�x,t�
T1

=� d�ei�t

2�i�
�e−ikx + Zeikx−2ikL�RT, �3.28�

where the integration is in the range �−� ,��. Under Eq.
�2.34�, W=W��� and RT=RT��� are given by Eqs. �2.40� and
�3.12�, respectively. The integrand is analytic �without singu-
larities� in the lower half plane Im ��0 and hence the inte-
gral is nonvanishing only for t�0.

In the time region t�L /c we may neglect the space de-
pendence of �T�x , t� in the interior and use the simple ex-
pression �3.15� for RT�t�. It then follows

�T�t� = T1��t�/2, �3.29�

where we introduce the dimensionless relaxation function
��t�. Its Fourier transformation reads

�
0

�

dte−i�t��t� =
1

i���i�t1Xv + 1�
. �3.30�

The inverse Fourier transformation of the right-hand side of
Eq. �3.30� may be transformed into an integral along the
positive imaginary axis Im ��0. With Xv being defined by
Eq. �2.41�, we find ��t��0 for t�0, ��t�	 t /�t1tB as t
→0, and ��t�=1− �t1� /�t�1/2+¯ as t→�. In particular, not
very close to the critical point, we may neglect the bulk
viscosity and take the limit tB→0; then, Xv→1+aw

−1 and
��t�→�0�s�, where �0�s� is a universal function of s
= t / t1� expressed as �3�

1
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FIG. 5. Absolute value of the response function RQ��� in Eq.
�3.24� vs �L /�c on a semilogarithmic scale for �=10−3 �upper
panel� and 10−4 �lower panel� applicable for CO2 in a Cu cell with
L=1 cm.
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�0�s� = 1 − �
0

� du

��u

e−us

1 + u
= 1 − es erfc��s� , �3.31�

where erfc=1−erc is the complementary error function and
�0	2�s /��1/2 for s�1 and �0	1−2��s�−1/2 for s�1.

In Fig. 6, we display ��t� as a function of t / t1� at �
=10−3, 10−4, and 10−5 for CO2 in a Cu cell with L=1 cm. For
�=10−3 we can see ��t�	�0�t / t1��, where tB / t1��0.02 from
Table I. The discussion below Eq. �3.16� indicates that ��t�
approaches unity on the time scale of t1� as long as Eq. �3.17�
is satisfied. This is the case even for �=10−5, where tB / t1�
	21 from Table I. In fact, if tB / t1��1 and aw�1, we may set
�i�t1Xv	 i��t1tB+aw

−1�i�t1, where the second term is rel-
evant in ��t� under Eq. �3.17�, again leading to ��t�
	�0�t / t1�� for t�aw

2 tB. However, the reverse condition of
Eq. �3.17� holds extremely close to the critical point, where
RT	1 / �i��t1tB+1� holds yielding �17�

��t� 	 1 − exp�− t/�t1tB� . �3.32�

The new relaxation time �t1tB here grows as �t1tB	1.0
�10−4L�−0.64 s for near-critical CO2.

Assuming the isothermal boundary �aw=��, Carlès and
Dadzie examined the bulk viscosity effect in the thermal
equilibration �17�. Their relaxation function is obtained if we
set Xv= �1+ i�tB�1/2 in Eq. �3.30�. Then a new viscous regime
appears for t1� tB with ��t� being given by Eq. �3.32�, while
the usual piston regime is encountered for t1� tB. For CO2
we have tB / t1	2.7�10−20L−2�−4.63, so t1= tB holds at �
	0.6�10−4 with L=1 cm. In our calculations based on Eq.
�3.17�, the different predictions have arisen from the reduced
temperature dependence of aw or the crossover of the bound-
ary condition into the insulating one.

2. Volume change

We suppose a volume change by moving the boundary
wall at x=0 by a small length u1 instantaneously at t=0 �1�.
We assume the thermal boundary conditions �2.28� and

�2.30� at x=0 and L. As in Eq. �3.26�, the complete interior
density deviation is the inverse Fourier transformation of Eq.
�3.8�, where � is given by Eq. �3.20� with uw=u1ei�t / i�.

Here we are interested in the late stage t�L /c, where the
interior deviations depend only on t. The inverse Fourier
transformation of Eq. �3.21� gives the interior deviations,

�	�t� = bs�T�t� = �1 −��t��	u1/L , �3.33�

where ��t� defined by Eq. �3.30� represents the effect of the
thermal diffusion layers at x=0 and L. The above form with
�=�0 was derived in Ref. �1�. If u1�0, the interior is adia-
batically heated by bs

−1	u1 /L on the acoustic time scale L /c
after the volume change, while the boundary wall tempera-
ture is almost unchanged. Subsequently, the thermal diffu-
sion layers become effective as reverse pistons and the inte-
rior temperature deviation decays as �t1� / t�1/2.

The reverse piston effect itself generally occurs on the
time scale of t1� after a near-critical fluid was adiabatically
heated or cooled. Miura et al. observed such a process after a
pulselike heat input �see Fig. 2 in Ref. �20��.

D. Emission of sound

We examine sound emission by mechanical and thermal
pistons in the one-dimensional geometry. We neglect the in-
coming wave reflected at the other end x=L and consider the
semi-infinite limit L→�.

1. Boundary motion

The problem is simple in the case of boundary wall mo-
tion at x=0. If the motion is much slower than t�, an emitted
sound propagates with the velocity c and integration of the
continuity equation ��	 /�t=−	�v /�x simply gives the
acoustic density deviation,

�	�x,t� = 	v1�t − x/c�/c , �3.34�

where v1�t�=limx→0 v�x , t� is the velocity of the boundary.
The localized part of the density deviation �the term propor-
tional to a in Eq. �2.20�� is small when differentiated with
respect to time.

We may derive this relation in our theory. In fact, under
the adiabatic condition �2.34�, Eqs. �3.12� and �3.20� lead to

� =
1 + Z

2�1 + �v�c
i�	uw, �3.35�

for e−2ikL→0. If we set 1+�v	1 and Z	1, the above rela-
tion becomes �	 i�	uw /c, leading to Eq. �3.34�. Here i�uw
is the Fourier transformation of v1�t� multiplied by ei�t. Thus
Eq. �3.34� holds on time scales longer than t� �even when the
time scale of v1�t� is shorter than tB�.

2. Heat input

A sound is also emitted when a time-dependent heat flux

Q̇0�t� is supplied at the boundary at x=0. We assume Q̇0�t�
=0 for t�0. From Eq. �3.8� the Fourier transformation of the
interior density deviation �	�x , t� is of the form �eikx with �
being given by Eq. �3.23�. Under the adiabatic condition
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FIG. 6. Relaxation function ��t� in Eq. �3.29� defined by Eq.
�3.30� vs t / t1� at �=10−3, 10−4, and 10−5 for CO2 in a Cu cell with
L=1 cm, which is applicable for t�L /c. The time t1� is defined by
Eq. �3.16�. The functional form of ��t� as a function of t / t1� is not
sensitive to � under Eq. �3.17�.
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�2.34� we may use the second line of Eq. �3.24�. The inverse
Fourier transformation gives the convolution relation,

�	�x,t� =
	

cT
� �T

�p
�

s
�

0

t

d� �x,t − ��Q̇0��� . �3.36�

The memory function  �x , t� is defined for t�0 as

 �x,t� =� d�

2�

c3

c*���3ei�t−ikx, �3.37�

where c*���=c�1+�v�1/2 from Eq. �2.39� and k=� /c*���.
The time integration of this function is normalized as

0
�dt �x , t�=1.

From the integration in the region �� t�
−1 we obtain the

long-time behavior  �0, t�	�4t /�t
3�1/2e−t/t with t�RBt� at

x=0. Since this relaxation is exponential, we may set
 �0, t�	��t� �� function� at x=0 on time scales longer than

t� or when Q̇0�t� varies slower than t�. Furthermore, if the
distance x is not large such that the bulk damping is negli-
gible at the position x, we may set  �x , t�	��t−x /c� to find
the simple formula for the emitted sound,

�	�x,t� =
	

cT
� �T

�p
�

s
Q̇0�t − x/c� , �3.38�

as the counterpart of Eq. �3.34�. On the other hand, use of
Eq. �A6� gives the short-time behavior �1�,

 �0,t� = ��̂/2�̂��t/t���̂/2�̂/t , �3.39�

valid in the time region t! t� with �̂ /2�̂	0.088 �see the
Appendix�. This behavior could be detectable only for rapid

variations of Q̇0 within a time shorter than t�.

Miura et al. applied a stepwise heat flux with Q̇=0.183
�107 from a film heater slightly separated from the upper
boundary to find a stepwise outgoing sound with �	 /	
	2.2�10−7, where Q̇ is in cgs units �erg /cm2 s� �20�. Our

theoretical expression �3.38� becomes �	 /	=1.38�10−13Q̇
with the aid of ��T /�p�s	Tc /6.98pc for CO2 �37�. For their

experimental Q̇ our theory gives �	 /	=2.55�10−7 in fair
agreement with the observed density change. Furthermore,
they could generate sound pulses with duration of order
10 
s by applying short-time heat input. They were inter-
ested in the adiabatically increased energy Ead
� p
dx�	�x , t� /	 in the pulse region per unit area. Here Eq.
�3.38� yields �3�

Ead =
p

T
� �T

�p
�

s
Q , �3.40�

where Q=
dtQ̇�t� is the total heat supplied �per unit area�.
The ratio Ead /Q represents the efficiency of transforming
applied heat to mechanical work. Theoretically, it is given by
��T /�p�sp /T	��T /�p�cxpc /Tc as in Eq. �3.40� and is equal
to 1 /6.98=0.14 for near-critical CO2 �37�. The measured
values of the ratio Ead /Q at the first pulse arrival to the
detector were in the range 0.11–0.12 again in fair agreement
with our theory.

We may calculate the excess mass density �Ma
�
0

�dx�	�x , t� �per unit area� in the outgoing wave emitted
from the boundary at x=0. From Eq. �3.38� we obtain �Ma
=	��T /�p�sQ0�t� /T for heating slower than t� in terms of the

heat supply Q0�t�=
0
t dtQ̇0�t�. If this expression is divided by

the system length L, it becomes of the same form as that for
the interior density change in Eq. �1.2�. Note that Eq. �1.2�
holds on time scales much longer than the acoustic time ta
=L /c. Here we argue how Eq. �1.2� can be obtained starting
with the emission law �3.38� �20�. That is, we supply a heat

Q̇�t� per unit time to the fluid. If it changes slowly compared
to ta, we may suppose a time interval with width �t� ta in

which Q̇�t� is almost unchanged. Since �t / ta is the traversal
number much larger than unity, the adiabatic pressure and
density increases in the interior region are the superposition
of many steps given by

�	 =
�p

c2 =
�t

ta

	

cT
� �T

�p
�

s
Q̇ . �3.41�

This relation is equivalent to Eq. �1.2� in terms of the incre-

mental heat supply �Q= Q̇�t.

E. Reflection of sound

Reflection of plane wave sounds is discussed for an iso-
thermal rigid boundary in the textbook of Landau-Lifshitz
�30�. Miura et al. �20� generated pulses with duration shorter
than L /c, which were reflected at the walls and their shapes
gradually flattened. However, the damping of such short
pulses upon reflection was very large even not very close to
the critical point, which cannot be explained by our one-
dimensional theory in the following �see the last paragraph in
this section�. They also generated stepwise pulses with dura-
tion longer than L /c. Carlès �21� excellently reproduced time
evolution of such long pulses at T−Tc=150 mK ��=0.5
�10−3�, assuming the isothermal boundaries and neglecting
the bulk viscosity.

We consider a pulse approaching to the boundary at x
=0 in the semi-infinite limit L→�. Reflection takes place
upon its encounter with the wall. The density deviations of
the incoming and outgoing pulses are obtained as the inverse
Fourier transformation of Eq. �2.20�. Neglecting the bulk
damping in the neighborhood of the boundary, we may ex-
press them as 	i�t+x /c� and 	o�t−x /c�, respectively. Using
����=ei�t
d�e−i��	i��� and �=Z�, we obtain

	o�t� =� d�

2�
� dt�Z���ei��t−t��	i�t�� . �3.42�

The interior density deviation is the sum �	�x , t�=	i�t
+x /c�+	o�t−x /c�. Since Z�0�=1, the excess mass �M per
unit area is invariant upon reflection as

�M = c� dt	i�t� = c� dt	o�t� . �3.43�

This relation holds if we integrate a long tail of the reflected
pulse 	o�t� at large t �see Eq. �3.48��.
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If 	i�t� changes much slower than t�, we may set Z	1
−2W with W= ��−1��i�T /Xv from Eq. �2.40�. In this ap-
proximation we may rewrite Eq. �3.42� in the following con-
volution form:

	o�t� = 	i�t� − �
0

�

d�"̇����	i�t − �� − 	i�t��

= 	i�t� − �
0

�

d�"���	̇i�t − �� , �3.44�

where "̇�t�=�"�t� /�t and 	̇i�t�=�	i�t� /�t. From Eq. �3.42�
the function "�t� is the inverse Fourier transformation of �1
−Z� / i�	2W / i�. Some calculations �in the complex �
plane� give "�t� in the integral form,

"�t� = #r�
0

� d$

��$
Re� e−$s

aw
−1 + �1 −$

 , �3.45�

where s= t / tB is the scaled time, Re�¯� denotes taking the
real part, and �1−$= i�$−1 for $�1. The dimensionless
parameter #r is defined by

#r = 2�� − 1��D/c2tB, �3.46�

which decreases near the critical point as #r	4.3�0.75 for
CO2. The function "�t� depends only on s and aw. For aw

�1 we have "�t� /#r	e−s/2I0�s /2� with I0 being the modified
Bessel function, while for aw�1 we have "�t� /#r	1
− 0�s /aw

2 � with  0 being defined by Eq. �3.31�. Thus "�t�
changes on the scale of tB� in Eq. �2.42� and its limiting
behaviors are as follows:

"�t�
#r

= �1 + aw
−1�−1��s�−1/2 + ¯ �s → ��

= 1 − 2aw
−1�s/��1/2 + ¯ �s → 0� . �3.47�

In addition, the second term of Eq. �3.43� representing the
distortion is negative �positive� when 	i�t� is increasing �de-
creasing�. This initial drop is because of heating and expan-
sion of the pulse at the boundary.

From the first line of Eq. �3.47� we obtain "̇�t�
	−�t2 /��1/2t−3/2 for t� tB� . �i� Let 	i�t� be peaked in the re-
gion �t�� tw with tw being the pulse duration time; then, for
t� tB� and tw, the first line of Eq. �3.44� gives a long-time tail
of the reflected wave,

�	�t��tail =
�M

c
�t2/��1/2t−3/2, �3.48�

where �M is the total excess mass defined by Eq. �3.43�. If
t� tw� tB� , the excess mass behind the peak in the form of
sound is given by the time integral of the tail �3.47� in the
region �tw , t� multiplied by c. Dividing it by �M we obtain
the fraction of the excess mass behind the peak at time
t��tw� �38�,

��M�t��tail/�M = �4t2/�tw�1/2 − �4t2/�t�1/2, �3.49�

which is equal to 10−7�−0.75�tw
−1/2− t−1/2� �with tw and t in sec-

onds� for aw�1 in CO2. �ii� As another example, we con-

sider a stepwise change, where 	i�t� is equal to 0 for t�0
and to a constant 	1 for t� tw with tw being the transient time
here. Then, for t� tB� and tw, the second line of Eq. �3.44�
gives a longer tail,

�	�t��tail = 	1�4t2/��1/2t−1/2. �3.50�

The bulk viscosity does not appear in these tails.
When 	i�t� changes much slower than tB� , only the long-

time behavior of "�t� is relevant in 	o�t�. From Eq. �3.44� we
find the following convolution relations:

	o�t� = 	i�t� +� t2

�
�

0

� d�

�3/2 �	i�t − �� − 	i�t��

= 	i�t� −�4t2

�
�

0

� d�
��
	̇i�t − �� , �3.51�

from which the long-time tails �3.48� and �3.50� readily fol-
low. The above expressions contain only t2 in Eq. �2.44� and
not tB. They are applicable far from the critical point �where
tB becomes short�. With decreasing � for the isothermal
boundary �aw�1�, t2 grows and the distortion of the re-
flected pulse increases as long as the pulse width is longer
than tB. However, if the pulse width is shorter than tB� , the
distortion decreases on approaching the critical point since #r
in Eq. �3.46� decreases.

As a simple illustration, let us consider a Gaussian pulse
	i�t�=	1 exp�−t2 /2tw

2 �, where 	1 is the pulse height and tw is
the pulse width. Since its Fourier transformation is

�2��1/2	1twe−�2tw
2 /2, we may readily calculate 	o�t�. In Fig. 7,

we plot the normalized pulse deformation defined by

FG�t� = �	o�t� − 	i�t��/�	1
�t2/tw� . �3.52�

The curve �a� is for the limiting case tB / tw→0 and aw=�,
while tB / tw=10 and aw=0.63 in �b�, and tB / tw=50 and aw
=0.63 in �c�. In Table I we have aw=0.63 and tB=1.9 msec at
�=10−4 for CO2 in a Cu cell, where pulses with tw� tB are
well possible �20�. We recognize that the distortion is nega-
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FIG. 7. Scaled pulse deformation FG�t��	o�t�−	i�t� defined by
Eq. �3.51� vs scaled time t / tw for a Gaussian incoming pulse with
width tw. Here tB / tw→0 and aw=� �a�, tB / tw=10 and aw=0.63 �b�,
and tB / tw=50 and aw=0.63 �c�.
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tive for t! tw and is positive for t% tw �in accord with the
comment below Eq. �3.47�� and that the distortion is de-
creased as tB / tw is increased or for shorter pulses due to the
bulk viscosity growth.

In the short-pulse experiment at T−Tc=500 mK ��=1.6
�10−3� �20�, the boundaries should be isothermal and the
bulk viscosity should be negligible in the thermal diffusion
layers. There, the pulse duration time tw was about 5 
K;
then, the factor �tw / t2�1/2 in the denominator of Eq. �3.52� is
of order 0.01. However, even at this relatively large reduced
temperature, the observed pulse deformation was of order
10%, which is much larger than predicted by our one-
dimensional theory neglecting side wall effects.

IV. SUMMARY AND REMARKS

In summary, we have examined various thermoacoustic
effects in one-component supercritical fluids in a one-
dimensional geometry. We summarize our main results.

�i� In the linear hydrodynamics, sound modes and thermal
diffusion modes are both present as in Eq. �2.20�, depending
on given boundary conditions. The latter modes can be ab-
sent only for the insulating boundary condition aw=0. The
calculations are straightforward and the final expressions are
much simplified under the adiabatic condition �2.34� or for
low frequencies ��c2 /�D. It is remarkable that the bulk
viscosity  appears in the combination �� /	c2=�tB in � in
Eq. �2.36�, as first pointed out by Carlès �16,17�. The result-
ant characteristic time tB grows as �−3.0, while the lifetime of
the critical fluctuations t� grows as �−1.9.

�ii� We have introduced the reflection factor Z��� as the
ratio between outgoing and incoming sounds. Using Z or
W= �1−Z� / �1+Z� we have examined the acoustic eigen-
modes, the response of the fluid to applied oscillation of the
boundary temperature, the boundary heat flux, and the
boundary position. To these thermal and mechanical pertur-
bations, resonance is induced when the frequency of the per-
turbation is close to one of the eigenfrequencies, while
nearly uniform adiabatic changes are caused in the interior at
much lower frequencies owing to the piston effect.

�iii� We have also examined the response to a stepwise
change of the boundary temperature and the boundary posi-
tion. The relaxation time is given by the modified piston time
t1� in Eq. �3.16� first introduced by Ferrell and Hao �14�. It is
equal to the original piston time t1 in Eq. �1.1� for the iso-
thermal boundary aw�1 and to aw

−2t1 for the insulating
boundary aw�1.

�iv� As the critical point is approached, the role of the
thermal diffusion layers is eventually diminished both by de-
creasing of the effusivity ratio aw and by growing of the bulk
viscosity , while the bulk sound attenuation becomes in-
creasingly stronger. The bulk viscosity effect in the thermal
diffusion layer is thus masked by its enhanced effect in the
bulk. This aspect can be seen in the damping of the eigen-
modes, as studied by Gillis et al. �18� and as in Fig. 3 in our
work. It is more apparent in the behavior of �T and �p in the
thermal diffusion layer in Eqs. �2.51� and �2.52�.

�v� For CO2 in a Cu cell, the boundary becomes thermally
insulating for ��10−4. Then, as long as Eq. �3.17� holds, the

bulk viscosity does not play a significant role in the thermal
diffusion layers. The viscous regime predicted by Carlès and
Dadzie emerges in the reverse condition or for ��2�10−6

with L=1 cm �16,17�. To increase this crossover reduced
temperature, the cell length L needs to be shorter.

�vi� We have also examined sound emission and reflection
at the boundary, which are elementary hydrodynamic pro-
cesses but seem to have not been well examined even far
from the critical point �30�. For emission, the formulas �3.34�
and �3.38� are valid for a mechanical piston and a thermal
heat input on time scales longer than t�. We have given an-
other derivation of the fundamental relation �1.2� of the pis-
ton effect from the emission rule around Eq. �3.41�. For re-
flection, Eq. �3.44� with Eq. �3.45� holds on time scales
longer than t�. The formula �3.51� is the classical one valid
on time scales much longer than tB, where the distortion of
the outgoing pulse increases on approaching the critical
point. For pulses shorter than tB, the distortion of the outgo-
ing pulse is decreased as can be seen in Fig. 7.

We make some critical remarks and mention future prob-
lems below.

�i� We have neglected gravity. In experiments on earth,
gravity effects become increasingly important as the critical
point is approached. It is noteworthy that stirring has been
used to remove gravity-induced density stratification �18,39�.
See Refs. �1,40� for theories of such stirring effects.

�ii� We have used linearized hydrodynamic equations.
However, as the critical point is approached, nonlinear
theory is needed except for extremely small perturbations.
This aspect has not yet been well understood except for some
special cases �3�.

�iii� In this paper, we have treated near-critical fluids in
one-phase states. The present work should be extended to the
case of two-phase coexistence. On long time scales conver-
sion between gas and liquid at an interface gives rise to slow
thermal relaxation �3,41�, while on acoustic time scales
sound reflection and transmission at an interface are still not
understood �42�. Also challenging is two-phase hydrodynam-
ics, where latent heat transport and wetting dynamics come
into play in addition to the piston effect �42–44�.
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APPENDIX: SUMMARY OF CRITICAL BEHAVIOR

Let a one-component fluid be on the critical isochore �	
=	c� with small positive �=T /Tc−1 near the gas-liquid criti-
cal point. The physical parameters used in Table I and the
figures are given below. Hereafter �̂�	0.63�, �̂�	1.24�, and
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�̂�	0.10� are the usual critical exponents. Data of near-
critical CO2 can be found in Refs. �31,37�, where Tc
=304.12 K. Theories of the dynamic critical behavior are
summarized in Ref. �1�.

Our hydrodynamic description is valid when the spatial
scale under investigation is longer than the correlation length
�=�0�

−�̂, where �0=1.5 Å for CO2. The constant-volume
specific heat CV=	T��s /�T�	 and the isobaric specific heat
Cp=	T��s /�T�p are expressed as

CV = AV��−�̂ + B�, Cp = Ap�
−�̂. �A1�

The background part of Cp is neglected. For CO2 on the
critical isochore, the coefficients are given by AV=26.3kBn*,
B=−0.9, and Ap=2.58kBn*, where n*= pc /kBTc	1.76
�1021 cm−3. The specific-heat ratio � grows strongly as
�0�

−�̂+�̂ if the background ��B� of CV is neglected, where
�0=0.1 for CO2. As discussed below Eq. �2.9�, the sound
velocity c �at zero frequency� may be approximated as

c2 = T��p/�T�cx
2 /	CV, �A2�

so c2=c0
2��̂ / �1+B��̂� with c0

2=T��p /�T�cx
2 /	AV. In writing

the figures in this paper, we have set c=2.3
�104�0.06 cm s−1 for CO2 neglecting the background of CV
�20�.

The thermal conductivity � grows such that the thermal
diffusion constant D behaves as

D = �/Cp = kBT/6��� = D0�
�̂, �A3�

where D0=4.0�10−4 cm2 s−1 for CO2. The background part
of � is neglected, so ����̂−�̂. The mean relaxation time of
the critical fluctuations with size � increases as

t� = �2/D = t0�
−3�̂, �A4�

where t0=0.56�10−12 s for CO2. The shear viscosity � is
only weakly singular and may be treated as a constant inde-
pendent of � and � to make rough estimates.

On the other hand, the zero-frequency bulk viscosity 
grows very strongly as

 = 	c2RBt�, �A5�

where RB is a universal number estimated to be about 0.03
�1,33�. For CO2,  /		0.9�10−5�−2+2�̂ cm2 s−1, so  /	D
=�v /�T	0.02�−2−�̂+2�̂ �see Eqs. �2.13� and �2.14��. In the
high-frequency regime �t��1,  becomes complex such that
the complex sound velocity c*��� in Eq. �2.39� becomes
asymptotically independent of � �32–34�. It is hence conve-
nient to examine the high-frequency behavior of c*���. In-
cluding the background of CV in Eq. �A1�, we may derive an
approximate expression valid for �t��1 �1�,

c*���2 = c0
2/��i�t0/2�−�̂/3�̂ + B� , �A6�

where c0
2 is introduced below Eq. �A2� and t0 is defined by

Eq. �A4�. Since i−�̂/3�̂=1− i��̂ /6�̂+¯ from �̂ /3�̂=0.053
�1, we find 0� Im c*�Re c* and Im �v=� Re  /	c2�1,
so that

Im c*

Re c* =
Im �v

2�1 + Re �v�
=
�

2

�̂/6�̂
1 + X

, �A7�

where X�B��t0 /2��̂/3�̂. This relation leads to Eq. �3.10� if X
is neglected. The real part Re c* represents the �-dependent
sound velocity behaving as

Re c* = c0��t0/2��̂/6�̂/�1 + X , �A8�

which very slowly increases with increasing � in the region
�t��1 �see Fig. 6.8 in Ref. �1��. The high-frequency bulk
viscosity defined by =	�c*���2−c2� / i� behaves roughly as
�−1. It has a small imaginary part given by Im 
	−	�Re c*���2−c2� /�.

Furthermore, in our thermoacoustic problems, we have
introduced the time tB in Eq. �2.37�, which behaves as

tB = tB
0�−3�̂−�̂+�̂, �A9�

where tB
0 =1.7�10−15 s for CO2. The effusivity ratio aw in

Eq. �2.29� decreases as

aw = aw
0��̂−�̂/2. �A10�

For aw
0�1 the boundary wall crosses over from an isother-

mal one to a thermally insulating one on approaching the
critical point. For example, between Cu and CO2, we have
aw

0 =3�103 �20�, where aw�1 is reached for ��1.6�10−4.
The aw

0 was smaller for the walls used in Refs. �15,18�.
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